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Reactive hard spheres model
• not every collision is reactive,
   energy dependence
• idea: 𝑘 𝑇 = 𝜎! 𝐸 	𝑢"#

• only orthogonal component can drive reaction

• probability: 𝑃! 𝐸$ = ,0	𝑝 	
if	𝐸$ < 𝐸∗
if	𝐸$ ≥ 𝐸∗

• Hard sphere collision cross section:  𝜎"# = 𝜋𝑑&

• Reaction cross section: 𝜎! 𝐸 = 2
0	

𝜋𝑑&𝑝(1 − '∗

'
)	

if	𝐸 < 𝐸∗
if	𝐸 ≥ 𝐸∗
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Reactive hard spheres model
• reaction cross section depends on energy,
   so we calculated the thermal average,
   using M.B. distribution and got:

   𝑘 𝑇 = 𝜋𝑑! 	 "#!$
%&

"
# 	 𝑝	𝑒'

$∗

&!' 

 hard-sphere cross section ×	mean velocity ×	 Arrhenius eq.
                                Arrhenius pre-factor 𝐴 
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Two-body classical scattering
• angular dependence and differential reaction cross section 𝐼!
• to learn more details about reaction mechanisms
• central interaction potential 𝑈 𝑟  (at least works for spherical rare 

gas atoms)
• The symmetrical nature of such a potential will make our life easier
• Again, treat all in center of mass framework
• Ask: What fraction of particles (a part of the total reaction cross 

section 𝜎!) scatters into a specific solid angle (a small element 𝑑Ω 
of the total solid angle Ω)?
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Two-body classical scattering

• Differential cross section: 𝐼! =
)*"
)+
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• Wanted: Differential cross section 𝐼! =
)*"
)+

= &-.).
&-/012 . )2

• For this, need to find deflection function 𝜒 𝑏
• For that, we first need to find the 𝜃(𝑟)
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• Brief reminder about particle flux conservation:
 𝜎! 𝑣, 𝛤 = ∫𝑃! 𝑣, 𝑏; 𝛤 	2𝜋𝑏𝑑𝑏  = ∬𝐼!(𝜒, 𝜙; 𝑣, 𝛤)𝑑𝛺

next: 𝜒 𝐸, 𝑏  
and then finally: 𝐼!(𝐸, 𝜒) 
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• We found for the trajectory

  𝜃 𝑟 = −𝑏 ∫!
" #"

"3 $%4 5
6 %7

3
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8
3

What is 𝝌 𝑬, 𝒃  ?
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• Deflection function: 𝜒 𝐸, 𝑏 = 𝜋 − 2𝜃(
• Inserting our solution from before for 𝜃 𝑟  yields

   𝜒 𝐸, 𝑏 = 𝜋 − 2𝑏 ∫!"
" #!

!# $%$ %
& %'

#

%#

(
#
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• What about the potential 𝑼(𝒓)?  So far, we didn’t specify it further!
• How does the hard-sphere potential look mathematically?

• Hard-sphere potential: 𝑈 𝑟 = ,
0 (𝑟 > 𝑑)
∞ (𝑟 ≤ 𝑑) 

• What’s the critical distance 𝑟(?
• For hard spheres, 𝑟( = 𝑑
• Let’s insert this into our deflection function
    𝜒 𝐸, 𝑏 = 𝜋 − 2𝑏 ∫9#

: )9

9$ ;<% &
' <(

$
&$

)
$
  to yield

    𝜒 𝐸, 𝑏 = 𝜋 − 2𝑏 ∫)
: )9

9$ ;<(
$
&$

)
$
= ⋯ = 2arccos .

)
 

𝑟

𝑈 𝑟

𝑑

∞

0

How does this 
look plotted?
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𝜒 𝐸, 𝑏 = 𝜋 − 2𝑏 ∫)
: )9

9$ ;<(
$

&$

)
$
= ⋯ = 2arccos .

)
 

• At what 𝑏 do we have heads-on collision?
   at 𝑏 = 0
• What is deflection angle 𝜒	there?
    𝜒 𝑏 = 0 = 𝜋 = 180° (elastic back-scatter)
• What happens beyond  𝑏 = 𝑑?
   no more collision or deflection, deflection angle is zero

𝑏

𝜒 𝑏

𝑑
0

𝜋
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𝜒 𝑏 = 𝜋 − 2𝑏 ∫)
: )9

9$ ;<(
$

&$

)
$
= ⋯ = 2arccos .

)

• for hard spheres, 𝜒 is energy-independent

𝑏

𝜒 𝑏

𝑑
0

𝜋

Okay, now let’s 
insert our new 𝜒 𝑏
 into 𝐼!  !
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𝜒 𝑏 = 𝜋 − 2𝑏 ∫)
: )9

9$ ;<(
$

&$

)
$
= ⋯ = 2arccos .

)
    (for hard sphere potential)

• and we had derived  𝐼! =
)*"
)+

= &-.).
&-/012 . )2

• reminder: solid angle element is  sin 𝜒 𝑑𝜒 ∫=
&- 𝑑𝜙 = 2𝜋 sin 𝜒 𝑑𝜒 

  𝐼( =
)*+
)+

= !%,),
!%-./0 , )0

= ,

123 0,-,. 	
= ,

, /01 -
,.

= ⋯ = )#

5

• It turns out that for a hard sphere potential the differential cross section 
is constant, and independent of energy or angle!
• What do we expect when integrating 𝐼!?
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We find  	𝐼! =
)$

>
 for hard spheres

What do we expect when integrating this 𝐼!?
• We should retrieve the total cross section 𝜎!

     𝜎 = ∬𝐼!𝑑Ω =
)$

> ∬𝑑Ω = )$

>
	4𝜋 = 𝜋𝑑&

• Success! We retrieved the hard-sphere cross section! J 

• Let’s now move on to a more realistic potential
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• The Lennard-Jones Potential

•   𝑈 𝑟 = 4𝜖 *
9

;&
− *

9

?
 

• “6-12 potential”
• 𝜖 depth of potential well
• 𝜎 softness of potential

• *
9

?
long-range attraction

• *
9

;&
 short-range repulsion

• How will its trajectories look as a function of impact parameter 𝑏?
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The Lennard-Jones Potential  𝑈 𝑟 = 4𝜖 *
9

;&
− *

9

?
 

• for 𝑏 = 0: head-on collision, deflection angle 𝜒 = 180°

• for small/medium 𝑏: expected deflection to some degree

• for large 𝑏:
unexpected wrap
around center
• Deflection angle?
• negative values!
• Not possible for hard spheres, why now? 
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The Lennard-Jones Potential  𝑈 𝑟 = 4𝜖 *
9

;&
− *

9

?
 

• Attractive part of LJ potential allows for such wrapping
   and resulting negative deflection angles
• Let’s also plot 𝜒 𝑏  next
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The Lennard-Jones Potential  𝑈 𝑟 = 4𝜖 *
9

;&
− *

9

?
 

• Why do all curves tend to 0
    at large 𝑏?
àParticles eventually don’t feel
  each other anymore, no deflection
• What happens for small 𝑏?
àParticles mostly feel repulsive
 part of LJ potential
à𝜒 resembles hard sphere case
• Different energies plotted
à for lower energies, even more
    pronounced wrapping

𝜒 𝑏

𝑏	[𝜎]

𝐸∗ =
𝐸
𝜖 = 5

= 2

= 1 = 0.2
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The Lennard-Jones Potential  𝑈 𝑟 = 4𝜖 *
9

;&
− *

9

?
 

• For high energies, particles
   are so fast, they barely sample
  the attractive part of the potential
• At minimum of curve:
   Rainbow angle
• Mathematical analogy to how
   light scatters from rain droplets
   to form rainbows
• Finally, let’s plot the differential
 cross section 𝐼(𝜒) for the LJ case

𝜒 𝑏

𝑏	[𝜎]

𝐸∗ =
𝐸
𝜖 = 5

= 2

= 1 = 0.2
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• The differential cross section for a LJ potential:   𝐼! 𝐸, 𝜒 = 𝑏/ ) @AB 2
).

	

• Dashed curve shows our
 calculated result – problem?
• It tends to infinity at large 𝑏 and
   at the rainbow angle 𝜒9  !!! Why?
• Result of classical treatment
• Would need to treat quantum-
   mechanically to smooth out the
   singularities
• At large 𝜒 (𝜒 → 𝜋, b → 0),
    𝐼!  approaches hard sphere value
    of  𝑑&/4

small b

large b

𝜒𝜒9

lg 𝐼! 𝑠𝑖𝑛𝜒

𝐸 ≈ 𝜖
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The differential cross section for an LJ potential:   𝐼! 𝐸, 𝜒 = 𝑏/ ) @AB 2
).

	

• At the rainbow angle (i.e., at 
   intermediate impact parameters):
) @AB 2
).

→ 0 meaning 𝐼! → ∞

• At small 𝜒 (𝜒 → 0, b → ∞):
) @AB 2
).

→ 0 meaning 𝐼! → ∞

• What about the negative
   deflection angles from before?

small b

large b

𝜒𝜒9

lg 𝐼! 𝑠𝑖𝑛𝜒

𝐸 ≈ 𝜖



2222

What about the negative deflection angles from before?

• Experimentally, you can only
   measure the values plotted
• Due to spherical symmetry of
   the potential, the negative
   deflection angles fold into the 
   positive ones J

small b

large b

𝜒𝜒9

lg 𝐼! 𝑠𝑖𝑛𝜒

𝐸 ≈ 𝜖
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• How can we determine an intermolecular potential experimentally?
• By measuring differential cross sections!
• Integrate over a range of deflection angles (e.g., larger than 𝜒9, from 𝜒=):

   ∫2*
- 𝐼 𝐸, 𝜒 2𝜋 sin 𝜒 𝑑𝜒 = −∫.(2*)

. - E= 2𝜋𝑏𝑑𝑏 = 𝜋𝑏 𝜒= &

• From this we now found
 a means to measure 𝜒 𝑏
• Then we can re-insert
  our 𝜒 𝑏  into our 
  earlier formula we
  solved for finding it,
  and instead isolate for 
   𝑈 𝑟    J
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Yuan Tseh Lee won the Nobel Prize for this in 1986 (with Polanyi & Herschbach)


