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Recap from last sessio
Reactive hard spheres model
* not every collision is reactive,

energy dependence
» idea: k(T) = (og(E) uyp)

n

* only orthogonal component can drive reaction

_ 10 fE; <
probability: PR(E,) = {p ifE, >

E*
E*

 Hard sphere collision cross section: o,z = md?

 Reaction cross section: oz (E) = -

(
0 ifE < E*

*

nd’p(1— ) itE > E°



Recap from last session

Reactive hard spheres model

* reaction cross section depends on energy,
so we calculated the thermal average,

using M.B. distribution and got:

k(T) = nd? (SQZT)E pe kT

hard-sphere cross section X mean velocity X Arrhenius eq.
Arrhenius pre-factor A



Recap from last session

Two-body classical scattering
* angular dependence and differential reaction cross section Iy
* to learn more details about reaction mechanisms

 central interaction potential U(r) (at least works for spherical rare
gas atoms)

* The symmetrical nature of such a potential will make our life easier
* Again, treat all in center of mass framework

* Ask: What fraction of particles (a part of the total reaction cross

section agy) scatters into a specific solid angle (a small element d{)
of the total solid angle (1)?



Recap from last session

Two-body classical scattering

. . . do dQ = sinydydd¢
* Differential cross section: [ = —
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| | . do 2mbdb
* Wanted: Differential cross section I, = _dff = 127siny (b)dy|

» For this, need to find deflection function y(b) A" = 2msinydy
» For that, we first need to find the 6 () d() = sinydxd¢
,",,,
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* Brief reminder about particle flux conservation:
O-R(U,F) — fPR(U, b, F) 2mwbdb = ff IR(X, ¢, U,F)d.()

A" = 2msinydy
d() = sinydydd
,",,,

bdbdd =7 2
trajectory 0(r) \ A\ (b) %
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A = 2mbdb next: y(E, b) ¢ //

and then finally: I (E, ) ”,/



* We found for the trajectory

6(r) = —b [l —F

1 A" = 2msinydy
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 Deflection function: y(E,b) = m — 26,

* Inserting our solution from before for 6(r) yields

A" = 2msinydy

b \ r(t) =|r,—rg
A = 2nbdb

00 dr
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* What about the potential U(1)? So far, we didn’t specify it further!
* How does the hard-sphere potential look mathematically?

. |10 (r>4d) U(r) 00
Hard-sphere potential: U(r) = {OO (r < d) '
* What’s the critical distance r,.?
* For hard spheres, 1. = d

e Let’s insert this into our deflection function

x(E,b) =m—2b f:o a - toyield 0 d—

U(r) b2]2
rzll— - —rzl

v(E,b) =m —2b fdoo dr == 2 arccos 2 How does this
> d look plotted?
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x(E,b) =m—2b fdoo a 7= = Zarccosg
rzll—g ?
x(b)
* At what b do we have heads-on collision? T
atb =0

* What is deflection angle y there?
y(b = 0) = m = 180° (elastic back-scatter)
« What happens beyond b = d? 0 d

no more collision or deflection, deflection angle is zero
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x(b) =m —2b fdoo = T= "= Zarccosg
rzll—b—z 2
* for hard spheres, y is energy-independent x(b) ,
77: '
>t
Yo . 4 /( no deflection for b >d )’ O d > b
A4
. ~
X

. o d Okay, now let’s
-

—— / insert our new y(b)
U into I !



y(b) =m—2b foo a 7= =2 arccosg (for hard sphere potential)
rzll—i—;
* and we had derived I, = LR 2hdb

dQ |2tsiny(b)d x|

. . . . 2 .
* reminder: solid angle element s sin y dy fo " dp = 2msin y dy
1= dogp 21thdb b _ _ d?
R =40 = Brsing(o)a pECEY iy
|2msiny(b)d x| ‘sm)(db‘ ‘ -

* |t turns out that for a hard sphere potential the differential cross section
IS constant, and independent of energy or angle!

* What do we expect when integrating I, ?
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2
We find I, = dT for hard spheres

What do we expect when integrating this I, ?
* We should retrieve the total cross section ¢!

2

a—ffIRdQ——ffdQ—d AT = 1rd?
* Success! We retrieved the hard-sphere cross section! ©

* Let’s now move on to a more realistic potential
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e The Lennard-Jones Potential - ]

v =4e|(5) - ()]

w
e “6-12 potential” 5 0.0
* € depth of potential well ~-05 €
» o softness of potential 1o
. Ot
. (g) long-range attraction 00 05 10 15 20 25 30

r/o

5\ 12 ,
. (;) short-range repulsion

 How will its trajectories look as a function of impact parameter b?

15



The Lennard-Jones Potential U(r) = 4¢ [(g)lz - (2)6]

* for b = 0: head-on collision, deflection angle y = 180°

e for small/medium b: expected deflection to some degree

0 > "
y4 e,
* for large b: == e
7 el
4 St e

unexpected wrai N — ==t e
around center ==
* Deflection angle? yF——F—+—— e

E 74 7 [ { 1Y "
* negative values! gy

* Not possible for hard spheres, why nhow?



o o

The Lennard-Jones Potential U(r) = 4¢ [(_)12 B (_)6]

r r

* Attractive part of LJ potential allows for such wrapping
and resulting negative deflection angles

* Let’s also plot ¥(b) next

0 >

e Z
- Z Z Z - p—
- = Z r 2 '




The Lennard-Jones Potential U(r) = 4¢ [(_)12 B (_)6}

* Why do all curvestendto O ¥(b) °
at large b?

—>Particles eventually don’t feel

w
1§

N

each other anymore, no deflection
* What happens for small b?

—>Particles mostly feel repulsive
part of LJ potential .
- y resembles hard sphere case

* Different energies plotted

—> for lower energies, even more

pronounced wrapping



The Lennard-Jones Potential U(r) = 4¢ [(_)12 B (_)6\

* For high energies, particles ¥(b)

w
1§

are so fast, they barely sample

N

the attractive part of the potential
* At minimum of curve:
Rainbow angle

* Mathematical analogy to how
light scatters from rain droplets -
to form rainbows

* Finally, let’s plot the differential

cross section I(y) forthe L) case




dcosy
db

* The differential cross section for a LJ potential: Iz(E,x) = b/

« Dashed curve shows our Ig(Ip) siny

calculated result - problem? \ largeb

\

* [t tends to infinity at large b and
at the rainbow angle y,. !l Why?

* Result of classical treatment

* Would need to treat quantum-
mechanically to smooth out the
singularities

* Atlarge y (y =» m,b = 0),

I, approaches hard sphere value !

of d?/4 Ar X



dcosy
db

The differential cross section for an LJ potential: Iz(E,x) = b/

lg(Ip) siny

* At the rainbow angle (i.e., at \ largeb
\

Intermediate impact parameters):

dcosy
db

— 0 meaning [ — o

e Atsmally (y = 0,b — o0):
dcosy
db

— (0 meaning [ — oo

* What about the negative

deflection angles from before? Xr ¥



What about the negative deflection angles from before?

lg(I) siny

* Experimentally, you can only 1

 large b

measure the values plotted \

* Due to spherical symmetry of
the potential, the negative

deflection angles fold into the
positive ones ©

\/

A




* How can we determine an intermolecular potential experimentally?

* By measuring differential cross sections!
* Integrate over a range of deflection angles (e.g., larger than y,., from y,):

b(m)=0

T . — — 2
fXOI(E,)()|27T sin y dx| = b(xe) 2bdb = wb(x,)

* From this we now found
a means to measure y(b)

* Then we can re-insert
our ¥(b) into our

1022V(R)/ joule

earlier formula we

-1

solved for finding it,
and instead isolate for

Ulr) ©
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Yuan Tseh Lee won the Nobel Prize for this in 1986 (with Polanyi & Herschbach)

‘ T . l g ] I ' ]

o

1022V(R)/ joule

[nteratomic potential of He-~He. The solid curve represents expenmental data,
points are theoretical. [Adapted from A. L. Burgmans, J. M. Farrar, and Y. T. Lee, J. Chem.
Phys., 64, 1345 (1976); unpublished computational results by B. Liu and A. D. McLean.]
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